Best Hardware for GPU Rendering

Best Hardware for GPU Rendering in Octane – Redshift – V-Ray

Graphics Card (GPU) based render engines such as Redshift3D, Octane or VRAY-RT have evolved tremendously and are starting to overtake CPU-based Render-Engines.

In regards of cost efficiency what do you have to keep in mind when building your GPU-Workstation? What is the best Hardware and best GPU for rendering with Octane, Redshift3D or VRAY-RT?


Since GPU-Render Engines use the GPU to render, technically what would be preferable is a max-core-clock CPU like the Intel i7 7700K that clocks at 4,2GHz (4,5Ghz Turbo) or the Intel i7 8700K that clocks at 3,7Ghz (4,7Ghz Turbo).

Additionally another consideration to keep in mind when choosing a CPU: PCIE-Lanes.

GPUs are attached to the CPU via PCIE-Lanes on the motherboard. Different CPUs support different amounts of PCIE-Lanes and Top-tier GPUs usually need 16x PCIE 3.0 Lanes to run at full performance.

The i7 7700K/8700K has 16 PCIE-Lanes meaning you could potentially utilize one GPU at full speed with these type of CPUs. In the case that more than one GPU running at full speed is necessary a different CPU then PCIE-Lanes like the AMD Threadripper CPUs, that have 64 PCIE-Lanes, the i9 7800X (28 PCIE-Lanes) or the i9 7900X Series CPUs that support 44 PCIE-Lanes.

GPUs, though, can also run in lower speed modes such as 8x PCIE 3.0 Speeds and then also use up fewer PCIE-Lanes (8x). Usually there is a negligible difference in Rendering Speed when having GPUs run in 8x mode instead of 16x mode.

Meaning 2x GPUs on an i7 8700K in 8x PCIE mode, 3x GPUs on an i9 7800X and 5x GPUs on an i9 7900X. (Given the Mainboard supports this configuration)

While actively rendering and your scene has been loaded into the GPU VRAM, it fits nicely in there and nothing has to be swapped out of core, GPU renderers are primarily reliant on GPU performance.

Some processes that occur before and during rendering too rely heavily on the performance of the CPU, Hard-Drive and network.

Such as extracting and preparing Mesh Data to be used by the GPU, loading textures from your Hard-Drive and preparing the scene data.

In extremely complex scenes, processing stages will take a while and can bottleneck the overall rendering speed, if a low-end CPU, Disk and RAM are employed.

If a scene is too large for the GPU memory, the renderer will need to access your System RAM or even swap to disk, which will considerably slow down the rendering.

Best Graphics Card for Rendering:

To utilize Octane and Redshift you will need a GPU that has CUDA-Cores, meaning you will need a NVIDIA GPU. VRAY-RT additionally supports openCL meaning you could use an AMD card here.

The most cost efficient are NVIDIA cards are 1070 GTX (1920 Cuda Cores, 8GB VRAM), 1080 GTX (2560 Cuda Cores, 8GB VRAM) and the 1080 Ti (3584 Cuda Cores, 11GB VRAM).

On the high-end, the highest possible performance is offered by the NVIDIA Quadro P6000, that additionally comes with 24GB of Video RAM. This Card has horrible Performance per Dollar ratio.

NVIDIAs new Volta architecture, whose release date is soon, will further dwell in this performance even more. Note that the Render Engines you are using will have to be updated in Order to use the New CUDA 9 Architecture these Volta Cards run on.

GPUs, that have 12GB Video RAM or more, can handle high-poly scenes with over 200 million unique objects best. Take a look at the performance per dollar tables below, to get an overview of how costly some of these cards can get without offering much more performance.

GPU Cooling:

Founders Edition Blower Style Cooler

  • PRO: Better Cooling when stacking more than one card
  • CON: Louder than Custom Partner Card Cooling

Custom Partner Cooling

  • PRO: Quieter than Blower Style, Cheaper
  • CON: Worse Cooling when stacking cards

Hybrid Cooling

  • PRO: Best All-In-One Cooling for stacking cards
  • CON: More Expensive, needs room for radiators in Case


  • PRO: Best temps when stacking cards, Quiet
  • CON: Needs lots of extra room in the case for tank and radiators, More Expensive

Power Supply:

A strong power supply for your system is detrimental. Most Cards have a TDP of around 180-250W. CPU of around 100W and any additional Hardware in your case.

A 500W is recommended for a One-GPU-Build. Add 250W for every additional GPU. Good PSU manufacturers to look out for are beQuiet, Seasonic and Coolermaster.

Mainboard & PCIE-Lanes:

Assure that the Mainboard has the desired amount of PCIE-Lanes and does not share Lanes with Sata or M.2 slots. Also be careful what PCI-E Configurations the Motherboard supports. Some have 3 or 4 PCI-E Slots, but only support one x16 PCI-E Card.

Check the Motherboard manufacturer’s Website to be sure the Card configuration you are aiming for is supported. Here is what you should be looking for in the Motherboard specifications:

In the example above you would be able to use (with a 40 pcie Lane CPU) 1 GPU in x16 mode. OR 2 GPUs in both x16 mode OR 3 GPUs one in x16 mode and two of those in x8 mode and so on. Beware that 28 pcie Lanes CPUs in this example would support different GPU configurations than the 40 lane CPU.

Currently the AMD Threadripper CPUs will provide 64 PCIE Lanes to connect the GPUs up to, if you want more you will have to go the multi-CPU route with Intel Xeons.

To further confuse things, some Mainboards do offer four x16 GPUs (needs 64 PCIE-Lanes) on CPUs with only 44 PCIELanes.

Enter PLX Chips. On some motherboards these chips serve as a type of switch, managing your PCIE-Lanes and leads the CPU to believe fewer Lanes are being used. This way, you can use e.g. 32 PCIE-Lanes with a 16 PCIE-Lane CPU or 64 PCIE-Lanes on a 44 Lane CPU. Beware though, only a few Motherboards have these PLX Chips. The Asus WS X299 Sage is one of them, allowing up to 7 GPUs to be used at 8x speed with a 44 Lane CPU, or even 4 x16 GPUs on a 44 Lanes CPU.

This screenshot of the Asus WS X299 Sage Manual clearly states what type of GPU-Configurations are supported (Always check the manual before buying):

PCIE-Lane Conclusion: For Multi-Gpu Setups, having a CPU with lots of PCIE-Lanes is important, unless you have a Mainboard that comes with PLX chips. Having GPUs run in x8 Mode instead of x16, will only marginally slow down the performance. (Note though, the PLX Chips won’t increase your GPU bandwidth to the CPU, just make it possible to have more cards run in higher modes)

Best GPU Performance / Dollar:

The chart demonstrates what to look at when choosing the right GPU to buy. The best performing GPU per Dollar.

Keep in mind the difficulty to get an average Price for some of these cards, since cryptocurrency mining extremely popular at the moment, so MSRP was used.

This List is based off of OctaneBench 3.


GPU Name VRAM OctaneBench Price $ MSRP Performance/Dollar
GTX 1070 8 120 400 0,300
GTX 1070 TI 8 130 450 0,288
GTX 1060 8 84 300 0,280
GTX 1080 TI 11 186 700 0,265
GTX 1080 8 137 550 0,249
TITAN XP 12 191 1300 0,146
GTX TITAN Z 12 144 2999 0,048
Quadro P6000 24 176 3849 0,045
Quadro GP100 16 232 7000 0,033
Tesla P100 16 230 7500 0,032

List based off of Redshift Bench, note how the cards scale (1080TI) [RedshiftBench Mark (Time [min], shorter is better)]:

GPU Name VRAM RedshiftBench Price $ MSRP Performance/Dollar
GTX 1070 8 17.11 400 1,461
GTX 1080 TI 11 11.44 700 1,248
4x GTX 1080 TI 11 3.07 2800 1,163
2x GTX 1080 TI 11 6.15 1400 1,161
8x GTX 1080 TI 11 1.57 5600 1,137
GTX 1080 8 16.00 550 1,136
TITAN XP 12 10.54 1300 0,729
Titan V 12 8.50 3000 0,392
Quadro P6000 24 11.31 3849 0,229
Quadro GP100 16 9.57 7000 0,149

Source: Redshift Forum

And here is a List based off of VRAY-RT Bench. Note how the GTX 1080 interestingly seems to perform worse than the GTX 1070 in this benchmark:

GPU Name VRAM VRAY-Bench Price $ MSRP Performance/Dollar
GTX 1070 8 1:25 min 400 2,941
GTX 1080 TI 11 1:00 min 700 2,380
2x GTX 1080 TI 11 0:32 min 1400 2,232
GTX 1080 8 1:27 min 550 2,089
4x GTX 1080 TI 11 0:19 min 2800 1,879
TITAN XP 12 0:53 min 1300 1,451
8x GTX 1080 TI 11 0:16 min 5600 1,116
TITAN V 12 0:41 min 3000 0,813
Quadro P6000 24 1:04 min 3849 0,405

Source: VRAY Benchmark List

Speed up your Multi-GPU Render times:

Since unfortunately GPUs don’t scale linearly. 2 GPUs render an Image about 1.8 times faster. Having 4 GPUs will only render about 3x faster. Having multiple GPUs communicate with each other to render the same task, costs so much performance wise, that one GPU in a 4-GPU rig is basically just managing decisions.

The solution is the following: When final rendering image sequences, use as few GPUs as possible per task. If you have to render 4 images and have 4 GPUs, let every GPU render one image instead of having 4 GPUs render on every image. This way you will not encounter any slow-down. Some 3D-Software might have this feature built-in, if not, it is best to use some kind of Render Manager, such as Thinkbox Deadline (Free for up to 2 Nodes/Computers).

Beware though, that you might have to increase your System RAM a bit and have a strong CPU, since every GPU-Task needs its amount of RAM and CPU performance.


Leave a Comment